ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025

<table>
<thead>
<tr>
<th>Owner of the declaration</th>
<th>Scandinavian Business Seating AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program holder</td>
<td>The Norwegian EPD Foundation</td>
</tr>
<tr>
<td>Declaration number</td>
<td>NEPD00038E Rev. 1</td>
</tr>
<tr>
<td>Issue date</td>
<td>17.12.2014</td>
</tr>
<tr>
<td>Valid to</td>
<td>17.12.2019</td>
</tr>
</tbody>
</table>

HÅG Capisco 8105

Product
General information

Product:
HÅG Capisco 8105

Owner of the declaration:
Scandinavian Business Seating AS
Contact person: Laura Fouilland
Phone: +47 40 41 56 13
E-mail: Laura.Fouilland@sbseating.com

Program holder:
The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo
Phone: +47 23 08 80 00
E-mail: post@epd-norge.no

Declaration number:
NEPD00038E Rev. 1

Place of production:
7366 Røros, Norway

This declaration is based on Product Category Rules:
PCR for Seating Solution, NPCR 003 extended version 2013, in accordance with recommendations by the Norwegian EPD Foundation

Management system:

Declared unit:

Declared unit with option:

Functional unit:
Production of one seating solution provided and maintained for a period of 15 years.

The EPD has been worked out by:
Østfoldforskning AS, Mie Vold

Verification:
Independent verification of data and other environmental information has been carried out in accordance with ISO14025, 8.1.3 and 8.1.4

Externally ☑ Internally ☐

Senior Research Scientist, Cecilia Askham
(Independent verifier approved by EPD Norway)

Management system:

Org. No:
No 928 902 749

Issue date:
17.12.2014

Valid to:
17.12.2019

Comparability:
EPD from programmes other than the Norwegian EPD Foundation may not be comparable

Year of study:
2014

Approved

Dagfinn Malnes
Managing Director of EPD-Norway

Functional unit:
Production of one seating solution provided and maintained for a period of 15 years.

Key environmental indicators (A1-A3)

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Cradle to gate A1 - A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming</td>
<td>kg CO₂eqv</td>
<td>45</td>
</tr>
<tr>
<td>Total energy use (CED)</td>
<td>MJ</td>
<td>535</td>
</tr>
<tr>
<td>Substances from the REACH Candidate list</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Amount of recycled materials</td>
<td>%</td>
<td>50 %</td>
</tr>
</tbody>
</table>

* The product contains no substances from the REACH Candidate list or the Norwegian priority list.
Product

Product description:
HÅG Capisco is inspired by the horseman’s saddle and sitting posture. No one sits as actively as a rider in the saddle. When you work sitting on a HÅG Capisco, you’ll be inspired to greater freedom of movement, variation and new natural sitting positions. HÅG Capisco allows you to sit as high or low as you want. No other work chair is so well adapted to work stations of different heights. Sit down and adjust it from a normal table height to a semi-standing position. Its award-winning design fits into creative meeting rooms and any other place where you want to work and move in a different way. It’s also a great chair for dentists and surgeons who work in semi-standing positions or when used back-to-front so that the back panel supports the chest.

Technical data:
Total weight: 12.9 kg (14.8 kg with packaging)
More information: http://www.hag-uk.co.uk/products/hag-capisco/

Market:
Europe and USA

Reference service life:
15 years

<table>
<thead>
<tr>
<th>Materials</th>
<th>kg</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>4.8</td>
<td>37 %</td>
</tr>
<tr>
<td>Steel</td>
<td>2.9</td>
<td>23 %</td>
</tr>
<tr>
<td>Plast</td>
<td>4.8</td>
<td>37 %</td>
</tr>
<tr>
<td>Textile</td>
<td>0.3</td>
<td>2 %</td>
</tr>
<tr>
<td>Cardboard</td>
<td>0.1</td>
<td>1 %</td>
</tr>
<tr>
<td>Various</td>
<td>0.0</td>
<td>0 %</td>
</tr>
<tr>
<td>Total product</td>
<td>12.9</td>
<td>100 %</td>
</tr>
<tr>
<td>Cardboard (packaging)</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Total product and packaging</td>
<td>14.8</td>
<td></td>
</tr>
</tbody>
</table>

In manufacture, about 53% of the total mass of the chair and its packaging is recycled material. At the end of the chair’s life, about 90% of its total mass will consist of materials that can be recycled.
LCA: Calculation rules

Functional unit:
Production of one seating solution provided and maintained for a period of 15 years.

System boundary:
Life cycle stages included are described in figure and through the corresponding letter and number designations in the declaration (see figure below).

![LCA System Boundary Diagram](image)

The seating solution components are assembled at SBSeating’s facility in Røros.

Data quality:
Specific data from suppliers and manufacturer 2011/2012 are used in the EPD analysis. Database data from Ecoinvent 3 is used as the basis for raw material and energy carrier production.

Cut-off criteria:
All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows that are included with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances.

Allocation:
- Where virgin materials are used, emissions and energy consumption connected with extraction and production are included.
- Where recycled materials are used in the product, emissions and energy consumption related to the recycling process are included.
- Emissions from incineration of waste are allocated to the product system that uses the recovered energy. This is a deviation from the PCR for Ecoinvent processes, where emissions from incineration are allocated to the product system in which the waste arises.
- Emissions from incineration of waste without energy recovery are allocated to the production system where the waste arises.

Additional information
According to the PCR the output should include both impact and the largest emissions (by mass) to air and water. Because of the format of the EPD the largest emissions are not presented.

The methods for calculating the environmental impact are IPCC 2007 for global warming and CML 2001 for other impact categories.

Material recycling at end of life (D) is not within the system boundaries, but as a scenario. The avoided emissions from replaced virgin material are included in D.

LCA: Scenarios and additional technical information

Transportation to an average customer in Copenhagen is 1000 km (A4). The use stage is represented by a scenario and includes vacuum cleaning of textiles once a month. The PCR does not provide detailed guidelines for what should be included in the use stage. In the end of life stage, the transport distance for waste to waste processing is 72 km (C1).

The reuse, recovery and recycling stage is beyond the system boundaries (D). It is assumed that the chair is dismantled and the materials recycled or combusted according to the general Norwegian treatment of industrial waste. This calculation includes CO2 emissions and energy only (C1-D). Disassembly is a manual process with no impacts on the results of the LCA and is therefore not included. The transport distance to reuse, recovery or recycling varies for each material, but the average distance is 373 km.
LCA: Results

The following information describes the scenarios in the different modules of the EPD.

System boundaries (X=included, MND=modul not declared, MNR=modul not relevant)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A1-A3</th>
<th>A4</th>
<th>B1</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C1-C3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP</td>
<td>42</td>
<td>1.3</td>
<td>2.4</td>
<td>45</td>
<td>2.0</td>
<td>6.1E-03</td>
<td>1.2</td>
<td>11.9</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>ODP</td>
<td>2.0E-05</td>
<td>8.4E-08</td>
<td>1.8E-07</td>
<td>2.1E-05</td>
<td>1.3E-07</td>
<td>1.9E-10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1.51E-05</td>
</tr>
<tr>
<td>POCP</td>
<td>1.3E-02</td>
<td>1.3E-04</td>
<td>5.8E-04</td>
<td>1.3E-02</td>
<td>1.4E-04</td>
<td>1.2E-06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-3.18E-03</td>
</tr>
<tr>
<td>AP</td>
<td>7.2E-02</td>
<td>1.0E-03</td>
<td>5.3E-03</td>
<td>7.9E-02</td>
<td>1.5E-03</td>
<td>5.0E-06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1.53E-02</td>
</tr>
<tr>
<td>EP</td>
<td>0.19</td>
<td>5.4E-03</td>
<td>8.6E-03</td>
<td>2.0E-01</td>
<td>6.7E-03</td>
<td>3.4E-05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4.44E-02</td>
</tr>
<tr>
<td>ADPM*</td>
<td>3.5E-04</td>
<td>5.8E-09</td>
<td>7.1E-06</td>
<td>3.5E-04</td>
<td>9.2E-09</td>
<td>2.0E-08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1.92E-04</td>
</tr>
<tr>
<td>ADPE</td>
<td>500</td>
<td>18</td>
<td>33</td>
<td>551</td>
<td>28</td>
<td>8.2E-02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-260</td>
</tr>
</tbody>
</table>

*Some processes included are based on data from Ecoinvent 3.0.1, which is lacking data for renewable resources. The correct number of ADPM in the table above and RPEE, RPEM and TPE in the table below may be higher. See reference [5] for details. The lack of data will be addressed in a new version of Ecoinvent 3, which was not available when this declaration was carried out.

GWP Global warming potential (kg CO2-eqv.); ODP Depletion potential of the stratospheric ozone layer (kg CFC11-eqv.); POCP Formation potential of tropospheric phootochemical oxidants (kg C2H4-eqv.); AP Acidification potential of land and water (kg SO2-eqv.); EP Eutrophication potential (kg PO4-3-eqv.); ADPM Abiotic depletion potential for non fossil resources (kg Sb -eqv.); ADPE Abiotic depletion potential for fossil resources (MJ)

End of life - Waste and Output flow

<table>
<thead>
<tr>
<th>Parameter</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A1-A3</th>
<th>A4</th>
<th>B1</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C1-C3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW</td>
<td>0.01</td>
<td>1.3E-05</td>
<td>6.4E-05</td>
<td>1.3E-02</td>
<td>2.0E-05</td>
<td>5.8E-06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2.5</td>
</tr>
<tr>
<td>NHW</td>
<td>16</td>
<td>1.0E-02</td>
<td>4.3E-01</td>
<td>16</td>
<td>1.6E-02</td>
<td>7.6E-04</td>
<td>2.3</td>
<td>2.3</td>
<td>0</td>
<td>0</td>
<td>-2.5</td>
</tr>
<tr>
<td>RW</td>
<td>0</td>
<td>-2.5</td>
</tr>
<tr>
<td>CR</td>
<td>0</td>
<td>-2.5</td>
</tr>
<tr>
<td>MR</td>
<td>0</td>
<td>-2.5</td>
</tr>
<tr>
<td>MER</td>
<td>0</td>
<td>-2.5</td>
</tr>
<tr>
<td>EEE</td>
<td>0</td>
<td>-2.5</td>
</tr>
<tr>
<td>ETE</td>
<td>0</td>
<td>-2.5</td>
</tr>
</tbody>
</table>

** Resource use**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A1-A3</th>
<th>A4</th>
<th>B1</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C1-C3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPEE</td>
<td>9</td>
<td>0</td>
<td>2.6E-03</td>
<td>8.9</td>
<td>0</td>
<td>9.2E-02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-13</td>
</tr>
<tr>
<td>RPEM*</td>
<td>3</td>
<td>2.2E-03</td>
<td>14.7</td>
<td>18.1</td>
<td>3.3E-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-13</td>
<td></td>
</tr>
<tr>
<td>TPE*</td>
<td>12</td>
<td>2.2E-03</td>
<td>14.7</td>
<td>26.9</td>
<td>3.3E-03</td>
<td>9.2E-02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-26</td>
</tr>
<tr>
<td>NRPE</td>
<td>479</td>
<td>18</td>
<td>31.7</td>
<td>520</td>
<td>28</td>
<td>7.8E-02</td>
<td>19</td>
<td>51</td>
<td>0.99</td>
<td>71</td>
<td>-271</td>
</tr>
<tr>
<td>NRPM</td>
<td>106</td>
<td>0</td>
<td>4</td>
<td>109</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-271</td>
</tr>
<tr>
<td>TRPE</td>
<td>585</td>
<td>18</td>
<td>35</td>
<td>639</td>
<td>28</td>
<td>8.7E-02</td>
<td>19</td>
<td>51</td>
<td>0.99</td>
<td>71</td>
<td>-271</td>
</tr>
<tr>
<td>SM</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>8.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-7</td>
</tr>
<tr>
<td>RSF</td>
<td>0</td>
</tr>
<tr>
<td>NRSF</td>
<td>-3.0</td>
<td>0</td>
<td>0</td>
<td>-3.0</td>
<td>0</td>
<td>3.9E-02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>W</td>
<td>1.69</td>
<td>3.5E-03</td>
<td>0.08</td>
<td>1.78</td>
<td>5.4E-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* See above.

** Energy is given in MJ in accordance with recommendations in the Norwegian EPD program.

RPEE Renewable primary energy resources used as energy carrier (MJ); RPEM Renewable primary energy resources used as raw materials (MJ); TPE Total use of renewable primary energy resources (MJ); NRPE Non renewable primary energy resources used as energy carrier (MJ); NRPM Non renewable primary energy resources used as materials (MJ); TRPE Total use of non renewable primary energy resources (MJ); SM Use of secondary materials (kg); RSF Use of renewable secondary fuels (MJ); NRSF Use of non renewable secondary fuels (MJ); W Use of net fresh water (m3)
Specific Norwegian requirements

Electricity
The following data from ecoinvent v3 (June 2012) for Norwegian production mix included import, low voltage is used; Energy/Electricity country mix/Low voltage/Market: Electricity, low voltage [NO] market for | Alloc Def, U. Production of transmission lines, in addition to direct emissions and loss in grid are included. Characterisation factors stated in EN 15804:2012+A1:2013 are used. This gives following greenhouse gas emissions: 24 g CO2-eqv/kWh.

Dangerous substances
None of the following substances have been added to the product: Substances on the REACH Candidate list of substances of very high concern (of ’16.06.2014) substances on the Norwegian Priority list (pr.17.06.2013) and substances that lead to the product being classified as hazardous waste. The chemical content of the product complies with regulatory levels as given in the Norwegian Product Regulations.

Indoor environment

Climate declaration
Not relevant

Bibliography

Program holder
The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo
Norge

Owner of the declaration
Scandinavian Business Seating AS
P.O Box 5055 majorstua, No 3001 Oslo

Author of the Life Cycle Assessment
Østfoldforskning AS
Stadion 4, 1671 Kråkerøy

Phone: +47 34 24 94 94
Fax: +47 34 24 94 94

Phone: +47 40 41 56 13
Fax: +47 22 59 59 59

Contact person: Laura Fouilland
web: http://www.sbseating.com/

Contact person: Mie Vold
web: www.ostfoldforskning.no