

De Projectinrichter

088 - 650 12 34

ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration

egetaepper a/s

Programme holder

Publisher

Institut Bauen und Umwelt e.V. (IBU)

EPD-EGE-20150334-CCA1-EN

Issue date

Valid to

Tufted Loop Pile Ecotrust

Tufted carpet tiles, pile material 900-1000 g/m² polyamide 6, 100% recycled, Ecotrust 350 - felt backing made of recycled material

ege®

www.bau-umwelt.com / https://epd-online.com

General Information

ege®	Tufted carpet tiles							
	total pile material 900-1000 g/m² PA 6							
	from recycled material,							
	Ecotrust 350 - felt backing							
Programme holder	Owner of the Declaration							
IBU - Institut Bauen und Umwelt e.V.	egetaepper a/s							
Panoramastr. 1	Industrivej Nord 25							
10178 Berlin	7400 Herning							
Germany	Denmark							
Declaration number	Declared product / Declared unit							
EPD-EGE-20150334-CCA1-EN	1 m² tufted carpet tiles with a pile material made of 900-1000 g/m² recycled PA 6 and an Ecotrust 350-felt backing							
This Declaration is based on the Product	Scope:							
Category Rules:	The declaration applies to a group of similar products							
Floor coverings, 07.2014	with a pile material of 900-1000 g/m ² .							
(PCR tested and approved by the SVR)	It is only valid in conjunction with a valid GUT/PRODIS licence.							
Issue date 15/03/2016	The carpet is produced in the ege® manufacturing site Herning, Denmark .							
	The owner of the declaration shall be liable for the							
Valid to	underlying information and evidence; the IBU shall not							
14/03/2021	be liable with respect to manufacturer information, life cycle assessment data and evidences.							
,	Verification							
Wremanes	The CEN Norm /EN 15804/ serves as the core PCR							
or o	Independent verification of the declaration							
•	according to /ISO 14025/							
Prof. DrIng. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)	internally x externally							
Lehmann	Angela Schindle							
Dr. Burkhart Lehmann (Managing Director IBU)	Angela Schindler (Independent verifier appointed by SVR)							
(managing birotor ibo)	(independent verifier appointed by GVT)							

Product

Product description

Tufted carpet tiles having a pile material of 100% recycled polyamide 6 and an Ecotrust 350 - felt backing made of 100% recycled polyester.

The recycled content out of total weight amount to 42.7%.

The declaration applies to a group of products with a total pile material weight of 900-1000 g/m^2 .

The calculations refer to the average pile material of 950 $\mbox{g/m}^2$.

The injection printing system allows the creation of various designs.

Application

According to the use class as defined in EN 1307 the products can be used in all professional area which require class 33 or less.

Technical Data

of the average product according to EN 1307

Name	Value	Unit
Product Form	Tiles	-
Type of manufacture	Tufted carpet	-
Yarn type	100% recycled polyamide 6	-
Secondary backing	100% recycled polyester	-
Total pile weight	900-1000	g/m²
Total carpet weight	up to 3350	g/m²

Additional product properties and performance ratings according to EN 1307 can be found on the Product Information System (PRODIS) using the PRODIS registration number of the product (www.pro-dis.info) or on the manufacturer's technical information section (www.egecarpets.com)

Base materials / Ancillary materials

Name	Value	Unit
Polyamide 6	28.8	%
Polyester	14.2	%
Limestone	21.6	%
Aluminiumhydroxide	17.5	%
SBR-latex	17.3	%
Additives	0.6	%

Reference service life

The service life of textile floor coverings strongly depends on the correct installation taking into account the declared use classification and the adherence to cleaning and maintenance instructions.

A minimum service life of 10 years can be assumed, technical service life can be considerably longer.

LCA: Calculation rules

Declared Unit

Name	Value	Unit
Declared unit	1	m ²
Conversion factor to 1 kg (average product)	0.3	-
Mass reference (average product)	3.3	kg/m²

System boundary

Type of EPD: Cradle to grave

System boundaries of modules A, B, C, D:

A1-A3 Production:

Energy supply and production of the basic material, processing of secondary material, auxiliary material, transport of the material to the manufacturing site, emissions, waste water treatment, packaging material and waste processing up to the landfill disposal of residual waste (except radioactive waste). Credits for electricity and steam from the incineration of production waste are aggregated.

A4 Transport:

Transport of the packed textile floorcovering from factory gate to the place of installation.

A5 Installation:

Installation of the textile floorcovering, production and transport of auxiliary material, waste processing up to the landfill disposal of residual waste (except radioactive waste), the production of the amount of carpet that occurs as installation waste incl. its transport to the place of installation.

Credits for electricity and steam from the incineration of packaging and installation waste leave the product system.

B1 Use:

Indoor emissions during the use stage. After the first year no product related VOC emissions are relevant due to known VOC decay curves of the product.

B2 Maintenance:

Cleaning of the textile floor covering for a period of 1 year:

Vacuum cleaning – electricity supply Wet cleaning – electricity, water consumption, production of the cleaning agent, waste water treatment. The declared values in this module have to be multiplied by the assumed service life of the floor covering in the building in question (see annex).

B3 - B7

The modules are not relevant and therefore not declared.

C1 De-construction:

The floorcovering is de-constructed manually and no additional environmental impact is caused.

C2 Transport:

Transport of the carpet waste to a landfill, to the municipal waste incineration plant (MWI) or to the waste collection facility for recycling.

C3 Waste processing:

C3-1, C3-2: Landfill and waste incineration need no waste processing.

C3-3: Collection of the carpet waste, waste processing (granulating).

C4 Disposal

C4-1, C4-2: Impact from landfill or from waste incineration (credits leave the system boundaries), C4-3: The pre-processed carpet waste leaves the system and needs no disposal.

D Recycling potential:

D-A5: Energy credits from waste incineration of packaging and installation waste (processing with < 60% efficiency),

D-1, D-2: Energy credits from landfill disposal and from waste incineration of carpet waste at the end-of-life (processing with < 60% efficiency),

D-3: Energetic and substance related credits from recovery of the carpet at the end-of-life in a cement plant (substitution of material and fuel input in the cement kiln), transport from the reprocessing plant to the cement kiln.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

LCA: Scenarios and additional technical information

The following information refers to the declared modules and is the basis for calculations or can be used for further calculations. All indicated values refer to the declared functional unit.

Transport to the construction site (A4)

Name	Value	Unit
Litres of fuel (truck, EURO 0-5 mix)	0.0079	l/100km
Transport distance	700	km
Capacity utilisation (including empty runs)	85	%
Gross density of products transported	390	kg/m³

Installation in the building (A5)

Name	Value	Unit
Auxiliary (fixing agent)	0.15	kg
Material loss	0.1	kg

Cardboard packaging waste and installation waste are considered to be incinerated in a municipal waste incineration plant.

Maintenance (B2)

Indication per m² floor covering and per year (see annex)

Name	Value	Unit
Maintenance cycle (wet cleaning)	1.5	1/year
Maintenance cycle (vacuum cleaning)	208	1/year
Water consumption (wet cleaning)	0.004	m ³
Cleaning agent (wet cleaning)	0.09	kg
Electricity consumption	0.314	kWh

Further information on cleaning and maintenance see www.egecarpets.com

End of Life (C1-C4)

Three different end-of-life scenarios are declared and the results are indicated separately in module C. Each scenario is calculated as a 100% scenario.

Scenario 1: 100% landfill

Scenario 2: 100% municipal waste incineration (MWI) Scenario 3: 100% recycling in the cement industry

If combinations of these scenarios have to be calculated this should be done according to the following scheme:

EOL-impact = x% impact (Scenario 1)

- + y% impact (Scenario 2)
- + z% impact (Scenario 3)

Name	Value	Unit
Collected as mixed construction waste (scenario 1 and 2)	3.3	kg
Collected separately (scenario 3)	3.3	kg
Landfilling (scenario 1)	3.3	kg
Energy recovery (scenario 2)	3.3	kg
Energy recovery (scenario 3)	2.0	kg
Recycling (scenario 3)	1.3	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

The recovery or recycling potentials due to the three end-of-life scenarios (module C) are indicated separately.

Recycling in the cement industry (scenario 3) /VDZ e.V./

The organic material of the carpet is used as secondary fuel in a cement kiln. It mainly substitutes for lignite (64.2%), hard coal (25.4%) and petrol coke (10.4%).

The inorganic material is substantially integrated in the cement clinker and substitutes for original material input.

LCA: Results

The declared result figures in module B2 have to be multiplied by the real service life (in years) of the floor covering in the building in question. The calculation formula is given in the annex.

Information on un-declared modules:

Modules B3 - B7 are not relevant during the service life of the carpet and are therefore not declared. Module C1, C3/1 and C3/2 cause no additional impact (see "LCA: Calculation rules") and are therefore not declared. Module C2 represents the transport for scenarios 1, 2 and 3. Column D represents module D/A5.

decia	rea. IV	/lodule	e C2 re	presen	ts the t	ranspo	ort for s	scenari	os 1,	, 2 ar	nd 3. (Colu	ımn	D repre	esents	module	e D/A5.	
DESC	RIPT	ION (OF THE	SYST	ЕМ ВО	DUND	ARY (K = INC	CLUE	DED	IN LC	A; I	MND) = MO	DULE	NOT D	ECLAF	RED)
PROI	DUCT S	STAGE	ON PR	TRUCTI OCESS AGE		USE STAGE							BENEFITS AN LOADS END OF LIFE STAGE BEYOND THE SYSTEM BOUNDARIES				ADS ND THE STEM	
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy	use Operational water	esn	De	Transport	Waste processing	Disposal	Reuse- Recovery-	Recycling- potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В	6 E	37	C1	C2	C3	C4		D
X	Х	X	X	X	Х	Х	MND	MND	MND			ND	MN	D X	X	X		X
RESU	JLTS	OF T	HE LC	4 - EN\	/IRON	MENT	AL IM	PACT:	1 m ²	² floc	rcov	erin	ıg					
Param eter	U	nit	A1-A3	A4	A5	B1	B2	C2	(23/3	C4/1	(C4/2	C4/3	D	D/1	D/2	D/3
GWP	[kg C	O ₂ -Eq.]	12.10	0.14	1.20	0.00	0.3	0.0	1 (0.02	2.89	Ę	5.08	0.00	-0.36 -1.18E-	-0.10 -7.50E-	-2.15	-1.08
ODP	[kg CF	C11-Eq.	1.70E-7	5.73E-1	3 1.55E-8	0.00E+	-0 1.31E	:-8 3.15E	-14 1.6	1E-11	6.22E-1	2 3.6	62E-9	0.00E+0	10=	11	-7.14E- 10	-7.39E-8
AP	1 3 2		3.74E-2		_					09E-4	7.16E-		99E-3	0.00E+0				-1.01E-2
EP POCP		0₄)³-Eq.] ene-Eq.]			_					5 5.92E-6 3.0 5 6.35E-6 7.0		_	02E-3 52E-4					-1.88E-3 -7.65E-4
ADPE		b-Eq.]	1.04E-4		+		-0 1.14E	-6 3.01E			3.32E-		33E-7			-1.77E-8		-8.12E-7
ADPF		/J]	199.00		8.53	0.00				0.24	2.16		2.24	0.00	-5.07	-1.12	-30.30	-69.50
Captio	n Eutr	P = Glol ophicati	oal warmii on potent	ng potenti ial; POCF	e Forma	ation pote	ential of t	roposphe	ric ozo	ne pho	otochen	nical o	oxidar	= Acidifica nts; ADPE resources	= Abiotic	ntial of lar depletion	nd and wa n potential	ter; EP = for non-
RESL	JLTS	OF TI	HE LC/	A - RES				² floor										
Param	eter	Unit	A1-A3	A4	A 5	B1	B2	C2	C	3/3	C4/1	С	4/2	C4/3	D	D/1	D/2	D/3
PER		[MJ]	26.18	0.11	1.91	0.00	0.72	0.01	_	80	0.14	_	.07	0.00	-0.60	-0.38	-3.60	-0.42
PERI PER	-	[MJ] [MJ]	0.00 26.18	0.00	0.00 1.91	0.00	0.00	0.00	_	00	0.00		.00	0.00	-0.60	-0.38	-3.60	0.00 -0.42
PENF	RE	[MJ]	151.08	1.93	9.27	0.00	8.22	0.11	_	39	2.26	_	.55	0.00	-6.14	-1.80	-36.69	-70.07
PENF		[MJ]	62.31	0.00	0.00	0.00	0.00	0.00		00	0.00		.00	0.00	0.00	0.00	0.00	0.00
PENE	_	[MJ] [kg]	213.39 1.53	1.93 0.00	9.27 0.04	0.00	8.22 0.00	0.11		39	2.26 0.00		.55	0.00	-6.14 0.00	-1.80 0.00	-36.69 0.00	-70.07 0.00
RSF					1.18E-4				_		1.90E-3	_					-4.00E-4	
NRS						0.00E+0					3.97E-3							
Captio	NRSF [MJ] 3.54E-2 1.34E-4 1.34E-3 0.00E+0 5.75E-4 7.37E-6 5.31E-5 3.97E-3 1.97E-4 0.00E+0 6.99E-4 -2.48E-4 4.18E-3 6.07E-4 FW [m³] 4.63E-2 1.89E-4 3.51E-3 0.00E+0 1.65E-3 1.04E-5 1.63E-4 3.01E-4 1.35E-2 0.00E+0 1.21E-3 -7.57E-4 -7.27E-3 -5.63E-3 PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERM = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PERM = Use of non-renewable primary energy excluding non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water																	
1 m ²	floord	overi	ng															
Param	otor	Unit	Δ1-Δ3	Δ4	Δ5	R1	B2	C2	C	3/3	C4/1	C	4/2	C4/3	D	D/1	D/2	D/3

Parameter	Unit	A1-A3	A4	A5	B1	B2	C2	C3/3	C4/1	C4/2	C4/3	D	D/1	D/2	D/3
HWD	[kg]	1.76E-5	0.00E+0	5.10E-7	0.00E+0	0.00E+0	0.00E+0	0.00E+0							
NHWD	[kg]	1.47E-1	7.25E-3	4.50E-1	0.00E+0	6.22E-1	3.99E-4	8.95E-2	2.86E+0	8.85E-1	0.00E+0	-6.60E-1	-4.17E-1	-3.98E+0	-5.24E+1
RWD	[kg]	5.24E-3	2.63E-6	2.14E-4	0.00E+0	3.96E-4	1.45E-7	5.77E-5	3.79E-5	1.08E-4	0.00E+0	-4.25E-4	-2.69E-4	-2.56E-3	-1.10E-4
CRU	[kg]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MFR	[kg]	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.31	0.00	0.00	0.00	0.00
MER	[kg]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.99	0.00	0.00	0.00	0.00
EEE	[MJ]	0.00	0.00	1.17	0.00	0.00	0.00	0.00	0.77	7.08	0.00	0.00	0.00	0.00	0.00
EET	[MJ]	0.03	0.00	2.68	0.00	0.00	0.00	0.00	0.00	15.91	0.00	0.00	0.00	0.00	0.00

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components

Caption for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EEE = Exported thermal energy

References

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013/04

www.bau-umwelt.de

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

PCR Part A

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report, April 2013 www.bau-umwelt.de

PCR Part B

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part B: Requirements on the EPD for floor coverings, V1.6, July 2014 www.bau-umwelt.de

EN 1307

DIN EN 1307: 2014-07:Textile floor coverings - Classification

EN 14041

DIN EN 14041:2008-05:Resilient, textile and laminate floor coverings

ISO 10874

DIN EN ISO 10874:2012-04:Resilient, textile and laminate floor coverings - Classification

EN 13501-1:

DIN EN 13501-1:2010-01: Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests

VDZ e.V.:

Umweltdaten der deutschen Zementindustrie 2012

